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ABSTRACT: The boundary element method has been successful

dimensional finite reservoir ' W _
29 and 3 ImEnSIOT s subjected to seismic motions. For infinit |
waves moving away towards infinity strongly influences the 1te reservoirs, loss of energy due to

y applied to the analysis of hydrodynamic forces

heel attempted for this case by omitting the far boundary. AlthOUgresp?nse' A F’Oundary element solution has

l jynamic pressures, the results are sensitive to the length of t

e ensﬂ)' @emj. An?thefl‘t;?ctﬂr that may at times play an important role in controlling th
s foundation damping. I'his paper presents results of more recent work on the applic tg

IEI ot method to the analysis of 2D reservoir vibration. Special boundary conditizfls ; 1:1[)

he reservoir discretized and the convergence

e hydrodynamic
of the boundary
resent radiation

jamping at the far end as well as foundation damping have been incor ' :
: : _ porated in the formulation. N '
-esults have been obtained and compared with classical results or results obtained by other rese;rréher: e

{ INTRODUCTION

Research on the seismic response of dam reservoir
system has now established that both water com-
pressiblity and dam flexibility significantly affect the
hydrodynamic forces caused by earthquake motion.
m factors that influence the response are: radi-
ation dampmg in an infinite reservoir due to energy
m by the outgoing waves, and the damping
provided by flexible foundation material.

?mm::ﬁrd s continuum with simple boundaries
(Chakra dmca.l solutions can be easily obtained
barti and Chopra, 1973).

dam.rum ; voir boundaries are irregular, the entire
oir system is modelled by finite elements

dam apq thedmph“mﬂtﬂ as the unknowns for the
Yoir (Sharap Pressures as the unknowas for the reser-
.obvm , 1978; Zienkiewicz and Newton, 1969).

Wi{&ﬁm el.ement. discretization cannot be
Case, the reservoir is of infinite extent. In such a
M&dt’" l“' in the outgoing waves has been
Pstrea of assuming that beyond & certain length
“0gulay the dam the reservoir has a uniform rect-
hmhd ::ctm n.' Finite element discretization is then
the%the lrregulu portion of the reservoir. For
Mﬂ ud infinite portion a continuum or a one
ol ﬁmte element solution is cbtained. Com-
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_patibility of pressures and pressure derivatives is then

enforced at the interface of the regulir and irregular

sections of the reservoir to complete tl.e solution (Hall
and Chopra, 1982a and 1982b).

A flexible foundation affects the response in two
ways. First, it dissipates energy by partially absorb-
ing the hydrodynamic pressure waves impinging on
the bottom of the reservoir, and second, it modifies
the free field ground motion at the base of the dam.
These effects can be considered either by modelling
the foundation material as an elastic half space or by
using finite elements to represent the Jexible founda-
tion (Chopra and Chakrabarti, 1981; Sharan, 1978).
The fluid-reservoir interaction effect has also been ac-
counted for in an approximate manner by using a sim-
plified boundary condition at the interface which mod-

els the energy dissipated by partial a>sorption of the

- ncident pressure waves (Hatamo and Nakagawa, 1972;
Chopra and Chakrabarti, 1981).

Recently the boundary element method has b-een
applied to the analysis of hydrodynamic forces in a
two dimensional (Hanna and Humar, 1982) as well as
o three dimensional finite reservoir (Humar, 1985; Hu-
mar and Jablonski, 1986). For in_ﬁr}lte reservoirs, so-
lutions have been obtained by ormitting the far bound-
ary. Although the procedure may give reasonable es-

timates of the hydrodynamic pressures, the reau!ts-
are sensitive 1O the length of reservolr boundary dis-

cretized and convergence is not easily at{hfeved. In. the
resent work a special boundary con lition obtmx}ed
I:p>y assuming that the reservoir 18 of regular section




of the dam and ob-

: stream
beyond a certain length up portion of the dam

taining a solution for the regulm: o ol
by classical method or a one dimensiona

has
ement discretization (Hall and Chopra, lgtgfz';-)r;ular
been incorporated in the boundary elemen

: 4 to account
tion. Also, a special boundary cont’-l]ll:c;‘;; ’{I)‘he B]?,M

for foundation damping has been inc |
so modified is an efficient tool fo

of the hydrodynamic pressures .inclu
radiation and foundation damping.

In the results presented here, the dam has been as-

sumed to be rigid and undergoing 2 harmonic motli::-.
The method can be easily extended to the compu

tion of hydrodynamic pressure for a prescribed mo-
tion of the flexible dam face. Solution of the compl:s:te
dam-reservoir system for an arbitrary ground motion
would require the use of substructure ap.proach alc?ng
with an analysis in the frequency domain employing

Fast Fourier Transform method.

2 FORMULATION OF BOUNDARY INTEGRAL
EQUATION

For non-viscous but compressible water undergoing
small amplitude two dimensional motion the follow-
ing equations of motion apply, provided the effect of
free waves at the surface is ignored:

d%u 19p

3~ poz (1a)

%y 19p

a7 ~  pay (18)
’p  3%p 1%
3e? Bt 3 (1c)
dz* ~ dy? 2 92

ments of a particle of water; ¢ = time variable- n =
. g =

p = the hydrodynamic
of sound in water.

mass of water per unit volume;
pPressure ; and ¢ = the velocity
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where w ;
Eq. 1c then gives:

L ] St 4

2
O x2 3y2+kP:0

where k = w/c is the wave number.

For a numerical solution of the problem,
by Eq. 2, a weighted residual formulati,

which the governing equation is satisfied in s
sense over the domain. This gives equatijqp.

/1

in which p* is the weighting function_

Il 1—3 'used :

In

’p

3%p O .
'é_y_z"'k p) P*d:‘.':dy-:_-__o

522 T

3)

Partial integrations of Eq. 3 give:

/1

32p¢
dx?

32p-
dy?

=qu*dc-—
C

in which ¢* = dp*/dn, ¢ = dp/an,
the water reservoir, and n
the boundary.

+

T kzp*) D dﬂ:dy

fp*q de

C

(4)

C = boundary of
the outward normal to

The weighting function p* is now chosen to satisfy
the following equation:

BZP#
dx?

a2pt

5,7 TEP =4

+

(5)

i-n which A* = a Dirac Delta function centered at point
t having coordinates (z;, y;).

Substitution of Eq. 5 in Eq. 4 gives:

f p'q dc

C

Ci pi = f p q'dec — (6)
C

in which ¢; = 1 for a point inside the water reservorr,
¢i = 1/2 for a point on the smooth Loundary of the
water reservoir, ¢; = 0 for a point outside the wa-
ter reservoir, and p; = the hydrodynamic pressure at
point 1.

When 1 is located at a corner on the boundary, s

B].lown In Fig. 2, the value of ¢; can be shown 10 be
glven by:

4
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where 8 is the external angle at the corner.

(")

G =1~




@ provides a means of determining the un- '
i \5 Pro“ oy ol | S A he Gesthain i Equation 8 can now be expressed as
o L g0t i:ntes“h of pressure and pressure deriva-

TP the boundary. While some of these

i i .I val! . are speclﬁed, others must be deter- o (1 - —@_) ; f P; } “ S
g g | val 6 can be used. Ir boundary ele- 58 E bl M ; e

Y Eq. . : =1 Pi+1
! b&f{::;tion, Eq, 6 1tself 1s usad to determine ; NIJ
.rﬂ:m on the boundal.:y. T::) achieve this, the o Z f (¢ 2] q; *ds
e anknO"TS domain is divided into a series of seg- oy WAL s BTN Gy
e d-md the parameters P and ¢ are assumed to %
g anpresclbed manner over a given segment. In i=1,2,--+,N
ry in 2 ment formulation, the segm (11)
ﬂ b poundary ele ’ gments  1ntroducing the notations:
1
T T e = 00 .[ ¢1 q*dsj o hEJ)
85
FAR BOUNDARY [ b2 q*ds; = 1(2)
i
3
e i A 12
\J r b " by p'ds; = (1) (12)
. ' i 1 p a8, 913
ﬁ 8y

*;
: lement discretization of a reservoir
Fig. 2 Boundary € Eq. 11 can be written as:
_re straight lines, and p and g are assumed to be equal 8 N 2)
¢ their values at the midpoint of the segment. The (1 - -é;-) p;i -+ Z(hij- p; + hy; Pi+1)
i=1

midpoint is ‘eferred to as a node. In a linear ele-

ment formulation, . ndividual segments again consist . q o e (13)
tht ﬁﬂﬂﬂ bIIt para.meters 4 a.nd q arc a.ssumed — Z(gn q, g" d5+1

o vary linearly over a segment and are functions of gt |

their values at the end points of the segment. The i=1,2,---,N

end points of the segment are referred to as the nodes

s0 that each segment is bounded by two nodes. Bqua- Assembly of the N equations represented by Eq. 13
tion 6 is now written for point s located at each node  ,iyes in matrix form:

on the discretized boundary, and takes the form:
Hp=Gaq (14)

B - * - * in which:
£, l--i;-) pi+Z/pq ds,-:Z[p quf (8)

=15, 1=1,4.
; (o, Hij = hS}) T hgzj-l) Sl
in which s, is the boundary of the jth element. s R P g B (2)
Um . Hi = 1 27 o (1,5-1)
> Enea;r boundary elements and referring to :
%..3 which shows the jth element, we have: Gy = ngl') ok 9%5,_.)5-1)

o= ¢s] { P; }
oy h]{ " } ' ferred to as the
) f Eq. 518 commonly reierr
el lut?on and can be shown to be (Hanna,

In which 'S ; : . fundamental 80
and ¢, are the shape functions given by: 111982 . Greenbers, 1971) given by:

$1=1/2 (1-§) (10) p* = :11- Yo(kr) (15)
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In the evaluation of G;;, singular integra] B
15

in which Y, = Bessel function of zero order and mf arise both when j = ¢ and j =i 4 1, Integmlﬂ 3
kind; r = the radial distance variable given by r = tainig singular terms are evaluated an&lytica.lly c?“‘
T8 +{y—w)° the approximation: 1oing
s £ 1n ()
4 EVALUATION OF BOUNDARY INTEGRALS e T ™ rp (20)
Using the fundamental solution given by Eq. 15, the  Thus,
boundary integrals in Eq. 12 can be evaluated as fol- () (2)
lows: =05 o/ .
: : and referring to Fig. 3,
h'(,) — /¢ g d&
'y l;
(16) 1
+1 L S f (1 o )
' gt = = | In(kz
- f_é/(l— £) Yo(kr) cos@ dé T e ;) 0 (k2) de
-1 I (21)
in which Y, (kr) = the derivative of ¥j (kr) with respect ax
to kr, and ¢ = the angle between the-outtfra.rd normal B e
n, and the radius vector r, as shown in Fig. 2.
The integral in Eq. 16 is evaluated numerically using o R !’_‘:_1_ (In kI
say a four-point Gauss quadrature formula giving: Fhbal — g V08 < 105) (22)
. 4 : Also,
hi; = -l—é‘l Z: (1 - &m)Yy(kr),,(cosb), w,,  (17)
m=1 Cdsas == (1) (2)
_ : i+1 = 95449 o 95 (23]
in which w,, = the weighting function used in the
Gauss t:'lua..drature. in which term gg) containing a singular Integran i
In a similar manner: evaluated as follows:
R(2) _ kly & ' e ;
7= T8 (14 &)Y (k) (con0) 9 = 5= [ = In(ks) d
m-—
( L 0 (24)
N l;
b = =50 (1 = En)Yolkr), Ve (18) = —(In ki; — 0.5)
m—1 47
4
(2) _ &
9% = 1g 2 (1+ &m)Yo(kr), wp,
m—1 5 BOUNDARY CONDITIONS
: o 1 2 ‘
For th'e special case of Hy;, the terms h,g-) and hs(‘,i)—- 1  Alter the elements of matrices G and H have been ob-

will vanish becaus? of the orthogonality of r and n so tained, the following boundary conditions are applied:

| AR i (19) 9.1 Along surface of the reservoir

The hydrodynamic pressure should vanish at the free
surface of the reservoir j.e. p(z, H,t) = 0 which gives

p(z,H) = 0.

5.2 Along the dam face

Fig. 3 Coordinate g st : _ _a_f: ~ii it (25)
boundary integrals - i the evaluation of In (9,¢) = g an(s,t) €
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§ . is the unit weight of watcr, s s the coor-
5 o the dam face, and a,, 18 the component
upate 8. ° _citing acceleration ampiitude along the

B e sl When the excitation is a horizontal

ap = — COS (26)
. - is the angle the dam face makes with the
ﬂﬂhﬁh Boundary condition given by Eq. 25 can thus
R g a
o KPS
ap w
e e W t — = COS8S (
: 3,;( 1) - X (27)
| oilar manner, for a vertical harmonic excita-
g
tion-
R
g= — sin & (28)
g
5‘3 the mer\l’ﬂi_r bOttv‘Om
s case, the boundary condition is adapted to in-

Jude, in 8D approximate manner, the effect of wave
' )

. _ The derivation has been presented by Hall
.nd Chopra (1982a) and will not be repeated here.

The resulting condition 1s

q= -g—z-(;,&') = —1:- aﬂ(s') e iw'y p(Sl,W) (29)

- which 8 = the coordinate along the reservolr bot-
tom, 7 = w/(w,C,) = the foundation damping coef-
ficient, w, = unit weight of the foundation material,
C, = compression wave velocity in the foundation ma-
terial and a,(s' ) = the harmonic excitation amplitude
along the outward normal. For a horizontal excitation

(30)

an(s) = sing

while for a vertical excitation

(31)

m*_'m ¢ is the angle that the reservoir bottom makes
¥ith the horizontal,

gL.: ond term on the right hand side of Eq. 29
%ﬂw effect of foundation damping. For rigid
dat .da: 7= 0 and the damping is absent. Foun-
::::nﬁm- PIng can also be defined in terms of a wave
Hall coefficient o, which is related to 7 as fol-

an(8) = —cos ¢

and Chopra 1982a):

-

ll“ar
Cl+4 a,

y= (32)
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9.4 Along the far boundary

For ' .
ary zeﬁzlts reservoir, the condition at the far bound-
pends on whether that boundary is fixed or free

rzc:i‘ée-atl"‘:; an infinite r_eservc)ir, the far boundary is
Sate Beyondet,irfd of the irregular region of the reser-
e e 18 boundary, the reservoir is assumed
finity. The gular rectangular section extending to in-
inﬁni-t o energy loss due to radiation damping in the
B glon 18 accounted for by imposing a special
b o y condition at the far boundary. The deriva-

n of the boundary condition closely parallels that

pl‘esent.efi by_ Hall and Chopra (1982a) and is briefly
summarized in the following section.

6 RADIATION BOUNDARY CONDITICN

The infinite section of the reservoir is shown in Fig. 4.
When the excitation is only a horizontal ground mo-
tion, the hydrodynamic pressure in this section is gov-
erned by Eq. 2 with the following boundary conditions:

dp
'5;(0: Y, w) ==t
%,
5%(:!:,0,0)) = “wq p(.’B, 0: w) (33)
p(z, H,w) =0
Yy
a 00
o ———————————
q=3zn

b s -

Fig. 4 The infinite but regular section of the reservoir

The governing equation can be solved by a seperation
of variables

P = Pz PV (34)

:n which p, satisfies the equation

d’pg

g =K P =0

and p, satisfies the equation




with the boundary condition

e (37)

d :
=¥ = fwy Py
dy

In Egs. 34 and 35, x = the seperatio
A is given by

n constant and

A2 = k? + x? (38)

a one dimensional finite

- » d b
Equation 36 18 solved by s

element discretization. The governing equa
expressed in discrete form as follows (Hall and Chopra

1982a).

[A + swy B] py = A" F py (39)

in which py = the vector of pressure values at the
nodes. The surface node is excluded from the formu-
lation because the pressure value is known to be zero

there. Also, matrix B has only one non-zero value,
that on the diagonal corresponding to the base node

b.
Equation 39 represents an eigenvalue problem which

for non-zero 7y leads to complex eigenvalues and eigen-
vectors. If the matrix of n eigenvectors obtained from

Eq. 38 is represented by W, the following relationships
are satisfied:

UT (A +iwyB] ¥ =A (40)

ir; Wl;ich A = a diagonal matrix of the n eigenvalues
Af,A2,°*+, AL, and the eigenvectors have been normal-
1zed to be orthonormal with resepect to F so that

T
w Fw-=1] (41)

The solution to Eq. 35 can now be written as

be expressed as Of pressure vectop O v
N
i Z n Yn e *nz
n=1 (43a)
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or — E
prErS (43p)
. e f nodal coordinat
: h n = a vector O i €8 and | _
e qal matrix of terms e tdad’ Ta.king the e

is a diagon : iati
;Stihe fgar boundary and differentiating Eq. 43

q:-—-‘I’Kf}

(44)
In which K 18 a diagonal matrix with el ementa

H7*1:1"‘-"2"”."ﬂ:}\,' . y
When the excitation 1s a vertical ground motion th
)y Ulg

hydrodynamic pressure 18 governed by Eq. 2 With g
boundary conditions "

ap
3n( Y )

w :
gg(x,o,@ =~ ay +iwy p(=,0,0) (45
p(z, H, w) =0

The problem is one dimensional in y coordinate and ;
variation is absent so the governing equation becomeg

? A

A numerical solution of governing equation with fipjt.
element discretization gives

[A+iwyB-KF|p="24 (47
g

?n which A, B, F are the same matrices as defined
in Eq. 39 and d is a vector with one non-zero term
e:qua.l to ay corresponding to the base node b. Equa-
tion 47. can be solved for p by using an eigenvector
expansion in which the complex valued eigenvalues A
and eigenvectores ¥ determined from Eq. 38 are used.
The vector of nodal pressures is then given by

p-—=§in*’w'—"d (48)

Combining Eqs. 43b and 48, the total pressure at the
far boundary is given by

P=‘I'n+-3-’-WK"wTd (49)

Now let the matrix Eq. 14 be expressed in a partk
tioned form ag follows:

Hll H1 2
H?l sz
H31 Hsz (50)
G q1
= | Ga1 Q2
Ggs; qs




1 - £ & b ...
! +* p '

s and qa represent, respectively, the pres-
f e nd pressure derivatives at the nodes on the
| g™ bottom while ps and qs are respectively the

m:undlfy '

. t'on
Sub’utg;_ 44 leads to
gs I

- +wyG1z HisW + GisWK
Bu g;:-i-:'w’rczz Hj3W + G2sWK | X
E: He + 1w7Gs2 HssW + GssWK
2 %Guan -~ %Hlsq'K": \I’:d
ll:: = | Ga1q1 — %Gnan -~ 1:—H23WK_ v d
" Gs1qQ1 — 3 &s2an — %Hss‘I’K“z'I’Tc(iSI)

tions 51 can be solved for all unknowns on the
cluding the nodal pressures on the dam

Equations
boundary 1n

face.

7 ANALYTICAL RESULTS

A limited amount of the results obtained from analyt-
ical studies based on the procedure described above
are presented here. For the purpose of these stud-
ies the dam is assumed to be rigid, with a vertical
face, the reservoir bottom 1s assumed to be horizon-
tal, the reservoir extends to infinity and is excited by
a horizontal harmonic motion of the dam. The re-
sulting values of the hydrodynamic pressures on the
dam are plotted in Fig. 5 for a range of values of the
exciting frequency. The following data is used in the
‘omputation of the results shown: height of reservoir,
=100 m; velocity of sound in water, c = 1440 m/s;
ﬂ:nn;m density of water; p = 1 tonne /m>. The far
- m?o of the reservoir was placed at a distance of
both rigi dm the dam fac?. Results are presented for
dlm;:ﬁ p::\r;ili ﬂ: flexible founda!;ion bo};tom, the
ited by the sof y the base alluvium being repre-

R ection coefficient; a reflection coeffi-
r=1 Tepresenting a rigid case.

—— Classical Solution
E 0.3 === BIE - no damping
‘-“-i : ~~ BIE - ag = 0.85
8 0, e - BIE - ag = 0.50
§n. : e P - iy = 0,00

=
-
]

e o o Pp

: M:! ond pressure derivatives at the nodes on the

for qz from Eq. 29, ps from Eq. 49 and
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C.)la-.ssica.l solutions exist for this simple geometry for a
rigid base soil. The comparison between the classical
a.‘nd boundary element results is very good. Founda-
tion damping significantly modifies the response near
resonance. However, away from thc resonant fre-
quency the effect of foundation damp’ng is small.

—— Classical Solution
--— BIE - no damping
- BIE - ap = 0.85
e BIE - aep = 0.50
= BIE - ag = 0.00

) 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 550 6.00
Ld/h.l]_
(b) Imaginary part
0.40r —— (Classical Solution
0.36+ --- BIE - no damping
S 0.32 ’I ~BIE - ag = 0.85
& R
— 0.28f { o —=BIE - ap = 0.50
> . e
& 0.24f P g ~—BIE - ag = 0.00
% 0.20} [ |
- f { ar=050
0.12F _ o | ag = 0.00
0.08F \ L\
0.04} s oy Piaw A

6—0'E0 100 150 200 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00

w/wy
(c) Absolute value

Fig. 5 Hydrodynamic forces on a dam face due to har-
monic excitation

8 SUMMARY AND CONCLUSIONS

The boundary element method is seen to be an effec-
tive procedure for evaluating the hydrodynamic pres-
sures in a reservoir. If compared to a finite element
method, it has the advantage of reducing the dimen-
sionality of the problem by one. However, the matrices
:nvolved in the BEM are unsymmetric and fully popu-
lated. Also, the evaluation of Bessel functions involved
in the fundamental solution for a 2D case takes sub-
stantial computation time. These observations would
ndicate that BEM would be very advantegeous for a
3D reservoir problem where a reduction in dimension-
ality from 3D to 2D and the simple: nature of the




fundamental solution would make the BEM a very ef-
ficient procedure.
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